Caudal ecológico como herramienta de gobernanza y política para la conservación de Cryphiops caementarius en el río Lurín

Authors

DOI:

https://doi.org/10.61286/e-rms.v3i.283

Abstract

The research aimed to estimate the ecological flow of the Lurín River to support the conservation of the river shrimp (Cryphiops caementarius) in the Antapucro sector, given its ecological and socioeconomic importance. A hydrological method with a quantitative, non-experimental, and explanatory design was applied, using historical hydrological series from 1964 to 2024 provided by the National Water Authority, integrating both modeled and observational data. The results revealed a marked hydrological seasonality, with maximum flows of 7.98 m³/s in March and minimum values of 0.29 m³/s in September, indicating the vulnerability of the ecosystem during the dry season. The biological characterization of habitats showed that Cryphiops caementarius currently has a restricted distribution, limited to midstream zones with deep and stable substrates, while eight representative fish species were recorded, including river silverside, catfish, lorna, carachita, toadfish, freshwater crab, and dragonfly larvae. Additionally, multiple anthropogenic pressures were identified, such as illegal fishing, domestic discharges, mining liabilities, agrochemical use, and solid waste disposal, all of which pose direct threats to aquatic biodiversity. In conclusion, the findings provide a technical basis for sustainable water flow management, ecological restoration, and the conservation of C. caementarius within the Lurín River ecosystem.

Downloads

Download data is not yet available.

References

Autoridad Nacional del Agua (ANA). (2019). Resolución Jefatural N.º 267-2019-ANA: Lineamientos técnicos para la determinación de caudales ecológicos. Autoridad Nacional del Agua.

Beesley, L., Marshall, J., & Bond, N. (2023). Longitudinal patterns in amphidromous prawns and the influence of hydrological connectivity in tropical rivers. Freshwater Biology, 68(5), 892–905. https://doi.org/10.1111/fwb.14012

Bergbusch, N. T., Saunders, M. D., Leonard, K., St-Hilaire, A., Gibson, R. B., Jardine, T. D., & Courtenay, S. C. (2025). A systematic scoping review of the collaborative governance of environmental and cultural flows. Environmental Reviews, 33(1), 1–28. https://doi.org/10.1139/er-2024-0015

Bonada, N., Gallart, F., & Ponsatí, L. (2024). Indicators of ecological status in temporary Mediterranean streams under natural and anthropogenic stressors. Science of the Total Environment, 927, 172051. https://doi.org/10.1016/j.scitotenv.2024.172051

Environmental Monitoring and Assessment. (2024). Freshwater salinisation: Unravelling causes, adaptive mechanisms, ecological impacts, and management strategies. https://doi.org/10.1007/s10661-024-13388-2

Feng, Y., Zhang, J., & Li, X. (2024). Estimation of ecological flow requirements using probabilistic hydrological models under climate change. Journal of Hydrology, 629, 131087. https://doi.org/10.1016/j.jhydrol.2024.131087

Gao, C., Hao, M., Song, L., Rong, W., Shao, S., Huang, Y., Guo, Y., & Liu, X. (2022). Comparative study on the calculation methods of ecological base flow in a mountainous river. Frontiers in Environmental Science, 10, Article 931844. https://doi.org/10.3389/fenvs.2022.931844

Gebreegziabher, G. A., Degefa, S., Furi, W., & Legesse, G. (2023). Evolution and concept of environmental flows (e-flows): Meta-analysis. Water Supply, 23(6), 2466–2490. https://doi.org/10.2166/ws.2023.120

Instituto Geográfico Nacional (IGN). (2024). Cartografía digital de las hojas Chosica (24-J), Matucana (24-K), Lurín (25-J) y Huarochirí (25-K). IGN.

Liu, H., Wang, S., & Zhang, Y. (2024a). Ecological flow regulation in tidal estuaries based on sediment transport and salinity constraints. Estuarine, Coastal and Shelf Science, 303, 108225. https://doi.org/10.1016/j.ecss.2024.108225

Liu, H., Wang, S., Zhang, Y., & Chen, L. (2024b). Human activities and ecohydrological degradation in the Huangshui River Basin: Implications for restoration. Environmental Monitoring and Assessment, 196(7), 562. https://doi.org/10.1007/s10661-024-11922-3

Lv, C., Zhang, Q., & Chen, Y. (2024). Reconstruction of natural runoff and ecological flow in the Jinsha River Basin under hydrological variation. Hydrological Processes, 38(4), e15012. https://doi.org/10.1002/hyp.15012

Meléndez, A., Rojas, M., & Alarcón, E. (2021). Determinación de la disponibilidad hídrica en la cuenca del río Lurín mediante modelación hidrológica distribuida. Universidad Nacional Agraria La Molina.

Ministerio de Agricultura del Perú (MINAG). (2004). Determinación de la disponibilidad hídrica superficial en cuencas de la sierra del Perú mediante el modelo Lutz Scholz. Proyecto Plan MERIS II.

Ndatimana, G., Dusabe, M. C., & Albrecht, C. (2025). Bridging riverine and lacustrine systems: Macroinvertebrate indicators of ecological health in the Rwandan Congo basin. Environmental Monitoring and Assessment, 197, 1218. https://doi.org/10.1007/s10661-025-14641-y

Pinazo Beltrán, L., Fernández, R., & Castro, J. (2021). Influencia del caudal ecológico sobre la conservación del camarón Cryphiops caementarius en la cuenca Majes-Camaná. Revista de Ecología Aplicada, 20(1), 45–59. https://doi.org/10.21704/rea.v20i1.1560

Pinna, M., Cataudella, R., & Arthington, A. (2024). Habitat modelling for macroinvertebrates using Random Forest and flow-ecology indices in Mediterranean rivers. Ecological Indicators, 160, 112051. https://doi.org/10.1016/j.ecolind.2024.112051

Rahman, M., Chowdhury, S., & Ahmed, T. (2021). Heavy metal contamination and ecological risk assessment in freshwater sediments: A case study in arid river basins. Environmental Science and Pollution Research, 28(5), 6123–6137. https://doi.org/10.1007/s11356-020-10795-2

Reyes-Ávalos, C. (2023). Adaptación del camarón de río Cryphiops caementarius a gradientes de salinidad durante su desarrollo larval. Revista Peruana de Biología, 30(1), e21119. https://doi.org/10.15381/rpb.v30i1.21119

Sedighkia, M., & Abdoli, A. (2024). Analyzing the impact of environmental flow indices on protecting the biodiversity of macroinvertebrates. AQUA – Water Infrastructure, Ecosystems and Society, 73(2), 302–321. https://doi.org/10.2166/aqua.2024.324

Velásquez, A., Gómez, M., & Salas, P. (2020). Evaluación poblacional del camarón de río (Cryphiops caementarius) en ríos costeros del Perú. Revista Peruana de Hidrobiología, 28(1), 41–53.

Velásquez Gallardo, A., Ramírez, C., & Pacheco, R. (2022). Déficit hídrico y demanda insatisfecha en la cuenca del río Lurín: Implicancias para la gestión de recursos hídricos. Revista del Agua y Desarrollo Sostenible, 5(2), 77–91.

Velásquez, A., Gallardo, R., & Pacheco, C. (2024). Evaluación de caudales mínimos sostenibles en cuencas andinas semiáridas: Caso del río Lurín. Revista Peruana de Recursos Naturales, 9(1), 15–32.

Wang, J., Li, D., & Zhou, S. (2022). Multi-objective ecological flow requirements in the Irtysh River for wetland and forest conservation. Ecohydrology, 15(2), e2371. https://doi.org/10.1002/eco.2371

Wang, X., Zhang, Q., & Liu, B. (2023). Ecologically relevant hydrological indicators (ERHIs) for sustainable river management in the Yangtze Basin. Journal of Hydrology, 618, 129351. https://doi.org/10.1016/j.jhydrol.2023.129351

Yang, T., Zhang, L., & Zhao, J. (2023). Ecological base flow and native fish protection in the Upper Yellow River. Water Resources Management, 37(6), 2523–2539. https://doi.org/10.1007/s11269-023-03456-1

Zhang, L., Feng, Y., & Liu, X. (2024). Improved range of variability approach for ecological flow assessment under global climate scenarios. Hydrology Research, 55(3), 541–560. https://doi.org/10.2166/nh.2024.077

Published

2025-11-15 — Updated on 2025-11-17

How to Cite

Zamora Talaverano, N. S., Gómez Lora, J. W., Gómez Escriba, B. P., & Nieto Arboleda, Y. Y. (2025). Caudal ecológico como herramienta de gobernanza y política para la conservación de Cryphiops caementarius en el río Lurín. E-Revista Multidisciplinaria Del Saber, 3, e-RMS03112025. https://doi.org/10.61286/e-rms.v3i.283